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SIJi’ilMARY‘

Anu.JIIsiIIia made of the $OW jiei?d prodwced by oblique im-
pingem& of weuk plane disturbanm of arbitrary pro$?e on a
pb?l.e normai?shock. Three typtx of disturbance are comidered:

(a) Sownd wane propagating in the gas at rest into which i!he

8hock movtx. % sound wave refraa% either as a simple &n-

tropie sownd wave or aa an atienwuting iwmiropic premure wave,

&pending on the angle beiween the 8hock and the incident 8ownd

wave. A 8td0n.ary vot%kiiy wave of constant prtwure appears

behind the 8hock.

(b) Sound wave overtaking the 8hock from behind. The

sownd wuve re$eci% w a 8ownd wave, and a 8tuti0nary vorticity

wave b produ.wd.

(c) An incompressible vorti.city wave etationmy in the gas
ahead of the 8hock. The &id-eni wave refraet$ w a sta.tbmzry

vortici.ty wave, and either a 8ownd wave or Wenm.i5ng premure

wave G also prodwxzi.

Comput.ati0n8 are pre+wnied for th-ejimt two typtx of incidtmt

wave, over i!lw range of hcia%nce angltx, for shack Mach num-
ber8 of 1, 1.6, and CO.

INTRODUCTION

The unsteady one-dimensional interaction of normal shock
waves and disturbances, such as sound waves or other shock
waves, has bepn studied quite thoroughly (an example is
Kantrowitz’ paper on shook stability, ref. 1). The steady
interaction between normal shock waves and plane Mach
waves has been treated by Adams (ref. 2).

The general class of unsteady flow problems is currently
of increasing interest, in connection particnlmly with sta-
bility of high-speed aerodynamic and combustion proccww
The effect of a shock passing through a flow field (or vice
versa) is likely to be important in many applications. For ex-
ample, ahofiwire anemometeri.niwndedto measurethefluctuat-
ingfield of turbulence in asupersonicstreamwill actually meas-
ure the turbulence as modified by paasage through the nearly
steady bow shock of the probe.

Considering, for simplicity, that the flow interacting with
a normal shock is a nonviscous field of weak disturbance, it
may usually be considered irrotationall and isentropic (such
as produced by a moving slender body) and therefore can be
imagined to be composed of a suitable array of sound wavw.
Another possible type of weak nonviscous disturbance would
be a stationary, incompressible flow of variable vorticity

(turbulence which is ecmvected rapidly past tie point of
observation is commonly thought of in this way).

Either of these two types of flow maybe represented as a

linear combination of plane waves (each wave either a sound
wave or a rotational wave, depending on the type of flow
to be represented) of various amplitudes, wave lengths,
and orientations. Thus, if the interactive tiect of a shock
and each constituent,wave may be found by a linear analy&,
the compleim problem may in principle be solved by linear
combination of the resulting flow fields behind the shock.
The interaction between a turbulent field and a wind-tunnel
screen or contraction, or both, has been suooedully carried
out in references 3 through 5 by this method.

The present report concerns the interaction of a’ normal
shock met obliquely by a plane sound wave or by a con-
vected plane vorticity wave. Since sound waves may im-
pinge on a shock either from upstream or downstream, both
cases are considered. The oblique interaction of a shock
and weak vorticity wave is also treated in a current investi-
gation by Ribner (ref. 6).

Theshockis considered to bemovingfreelyinto gaanominally
at rest (as in a shock tube, when wall efkots are neglected).
Of course, if the observer moves at a constant speed with the
shock, the flow appears as that associated with a steady
shock, under different stagnation conditions. The shock-
tubepoint of viewis adoptadin ord6r that there be no question
of how the equivalent steady shock is %nchored”; that is,
end eflects on the shock are not contemplated.

GoVERNINGUNSTEADYEQUATIONS

In the following paragraphs, the equations will be derived
which pertain to the propagation of a plane normal shock
wave through a gas at rest, as modiiied by the influence of a
weak pattern of unsteady disturbance.

If the shock propagates without disturbance, its instan-
taneous position is zI= Vt, in a coordinate system tied in
the fluid nominally at rest ahead of the shock (fig. 1). (AU
symbols are defined in append& A.) The constant velocity
of the shock front is V, and the corresponding constant
velocity of the gas behind the shock is U, in this system.
This one-dimensional motion is considered to be perturbed
slightly by the presence of a weak field of unsteady plane
flow. The velocity ahead of the shock is written as m(z,y,t),
ol(z,y,t); behind the shock as U+w4,V,t), v&w,t). Pres-
sure, density, and temperature are written as P+p, R+P,

t Snpsedcs NAO ATN 2%’9,“unsteady Oblfwe ~h’mMoIId aShookWavewithaP18neDMnrhmcJ%”byFmnkltnE. Bhoore,195S.
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and e +0, respectively, where the capitalized symbols refer
to the basic steady-shock motion, and the lower case to the
unsteady dist~bance. Throughout, subscripts 1 and 2 are
used to specify conditions ahead of and behind the shock,
respectively. As a result of the unsteady disturbance, the
shock front itself undergoes a small unsteady displacement,
given by $(y,t). Thus, the position of the shock at any
instant is Vt+.H&,t).

SHOCK RELATIONS

Because of the rapidity with which changes occur across
a shock wave, the disturbed shock may be regaxded as be-
having in a locally quasi-steady manner; that is, in a coordi-
nate system fixed in the shock at each instant, the usual
Rankine-Hugoniot relationq apply. Because of the disturb-
ance, the shock is slightly oblique in such a coordinate system
(see sketch). Because the shock is only. slightly oblique, the

‘‘2L
V-u+’ft+2

\%xk -

shock relation concerning the product of veloci~ compo-
nents normal to the shock front ahead of and behind the
shock (ref. 7) maybe written approximately aa

(v–u+&-U2)(v+&-d=

The assumption of a slightly oblique shock also provides
that the equations of conservation of normal energy and
mass, respectively, may be written:

7J ez+(h)(lb); (v–u+ft–th)’+~ (

(R,+ pJ(v+&-uJ=(l?2+ P2)(T7– U+h-%) Oc)

The remaining oblique shock relation states that the velocity
component parallel to the shock is unaltered by passage
through the shock. Because the shock is assumed to be only
slightly oblique, this relation is, approximately,

vl-vt.=ti––w- m%
or,

_&=~ (Id)

The shock relations for the basic undisturbed shock propa-
gation are obtained from equations (la), (lb), and (lc),
with small quantities neglected:

TJ el(V–Z7)V=25 (;~+~
)

(2a)

$V+~e,=~(v–uy+~e2 (2b)

R, V= R,(V– U) (2C)

Terms of equations (la), (lb), and (lc) which are of first
order in small quantities yield the conditions which the clis-
turbance field must sa$isfy at the shock:

(v–~(g,–u,)+V(.5–-’U9)= 2~[v(L-lLl)+*fq

(3(L)

-yJ ~,7J el=(v—m(&lfJ+7_lv(ft–th)+~ (3b)

PIV+R(L-W)=PN- u) +MEf-%) (3C)

Equations (2), the state equation

P=JR9 (bS9iC flOW)

PPO—=—p R+g (perturbation flow-)

Y

I ( I
I

:[

I
P2+&
172 ~ P2

J“
t(y,t) .

e2 +82 I
I

‘L”2 “~ ‘L.l
u

(4)

PI+ pl
Rl+pl
0, +9(

A A

+V+)...m+an+oi,lo”
Positrnn of shtck front if ---- I
there were m disturbance disturbed skck frcmt

Fmmm I.—Notation for shook wave propagating into a region of
W& clfsturbance.

and the assumption that the incident flow ahmd of the shock
is isentropic permit equations (3) to be simplified, yielding
the following set of disturbance shock relations (eq. (Id) is
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also included), which relate the disturbance fields ahead of
and behind the shock:

(5a)ll~~=B,~+B,~

g=c,p+c,g (5b)

P,
(SC)>=D, ~+D, ~

V2 01 u—.—.
vvv~”” (5d)

where the coefficients are constants de~endti on the Mach
number of the undisturbed shock M= ‘V/al: -

J/f2 Y—1_—
D,=

2

‘y— 1
TM2—T

(6)

EQUAYTONSOF PLANEDISTURBANCEFIELD

In addition to the perturbation shock relations (eqs. (5))
which are concerned with the compatibility at the shock of
weak disturbance fields ahead of and behind the shock, the
equations satisfied by the disturbance fields themselves are
required. The nonviscous equations of motion are -written
in n coordinate system at rest relative to the gas ahead of or
b&ind the shock. That is, the following equations apply
in the coordinate system of @ure 1 for the disturbance field
ahead of the shock, and in a coordinate system moving with
velocity U, for the disturbance behind the shock. Subject
to interpretation of the coordinate system, the same equa-
tions apply in both regions, and therefore the subscripts 1
and 2 are omitted for the time being. To first order in small
quantities:

Momentum:

W= –~ p. 1

Continuity

Energy:

State:

1
vt=—~pp

J

PL+Muz+vr)=o

c#Re’+P(7&+vp) =0
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(7)

(8)

(9)

(4)

These equations may be combined to yield the equation for
the pressure disturbance:

[%-a’(~+%xp=o’a’=%’10)
the equation for the entropy disturbance (which may be
shown to be proportional to (p/P) –T(p/R)):

$’4%)=0 (11)

and the equation for the vorticity (v.—ur) of the disturbance
flow:

: (%-%)= o (12)

Thus, the pressure disturbance satisfies the wave equation
(10), and any entropy variation (eq. (11)) or vorticity varia-
tion (eq. (12)) is steady, relative to the main flow. Any
disturbance field satis&ng time linear equations may be
regarded as composed of two parts, one steady and the other
unsteady, in a coordinate system at rest in the main flow.
I?rom equations (11) and (12), variation of entropy and vor-
ticity maybe assigned to the steady flow; and from equation
(8), the associated velocity components satisfy the incom-
pressible continuity equation. l?rom equations (7), pressure
variatior& must be assigned to the unsteady flow, satisf@g
the wave equation (10). The unsteady portion of the flow
may then be regarded as produced by a pattern of sound
waves. A weak nonviscous disturbance field may therefore
be considered b include:

1. b unsteady, isentropic, irrotational disturbance, which
may be regarded as produced by a pattern of sound waves,
and

2. A steady rotational disturbance of constant pressure
and (in general) variable entropy and densi@.

TYPESOF INITIALDISTURBANCECONSIDERED
The present analysis concerns the interaction of a shock

wave with three types of initial plane disturbances:
A.t30UN0WAVE OVERTAKEN BY SHOCK

The shock moves into a region in which a plane sound
wave is propagating in a direction oblique to the direction
of shock propagation (fig. 2(a)). Since the shock velocity is
supersonic relative to the gas ahead, it will overtake the
sound wave, whatever its direction of propagation. The

,
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solution for the interaction of such a wave with a shock may
in principle be gemmdized by linear superposition to pro-
vide analysis of the passage of a shock through any isen-
tropic field of small disturbance.

A general plane sound wave maybe represented as follows
(the particuhmprofle of the wave need not be specified):

;=A, f
(

mzl—ly+al
xl ?

$=A,f
‘mxl —ly+al

( Xl 9

Pl=&f (mm-f+al~

mzl—lg+alt
~=A4f ( ~1

)
where

l=siu #l; m=cos *I

(12a)

(13)

and Xl is a length characterizing the scale of the disturbsmce.
If the function f were a sine wave, AI would be equivakmt
to the wave length. By equations (12), (11), and (7),
respectively,

lAl=–mA,

A3=7A4
.1

(12b)

A,=–—
,; ‘3 J

The disturbsace is of the type 1 discussed in the previous
section (unsteady, isentropic, irmtational), and is longi-
tudinal; that is, the fluctuating veloci~ component is in the
direction of propagation of the sound wave.

11SHOCK OVERTAKEN BY SOUND WAVE

The sound -wave propagates relative to the fluid behind
the shock, in such a manner as to overtake the shock (&g.
2(b)). Thus, consideration will be resticted to cases for
which —~ cos ~~1>V— U. The initial disturbance may be
specified in a maimer similar to that employed for the pre-
ceding case.

The subscripts 1 and 2 have been introduced to denote the
flow ahead of and behind the shock, respectively. In the
present problem, the entice flow disturbance occurs behind
the shock. The subscript 2 is therefore appropriate to both
the incident amd reflected waves, which will hminafter be
distinguished by second subscripts 1 and 2, respectively.

(14a)

FOR A33RONAlJ’ITCS

Pertiuent~quations of motion provide, as before,

The coordinate system G,Y is fixed relative to the flow behind
the shock.

C.STATIONARYVORTICITYWAVE OVERTAKEN BY SHOCK

The shock moves into a region occupied by a stationary
plane shear disturbance of ConSlantdensity, oblique relative
to the shock front (fig. 2(c)). A system of such waves moy

(a)
(b)
(c)

Y

%/
/‘N/’ *I

‘4 I \ x,
(c)

Shook overtaking eound wave.
Sand wave overtaking shook from behind.
Shock overtaking stationary shear wave.

l?IGtmE2.—TYpIa of initial disturbance considered.

be employed M represent a turbulent field (refs. 3 and 4).
Therefore, the effect of the pa-wage of a shock through a
single oblique shear wave may in principle be generalized by
Fourier superposition to provide an analysis of the paasage
of turbulence through a normal shock.

The incident vorticity wave, of arbitrary proiile, may be
reprwented as follows:

}

*=A’frz::z”) ‘
(16)

mzl —ly
;=A,f( ~1

)

From equation (9),
mA1 =lAP (16)

The disturbance is therefore a special case of tlm typo 2 ~
discussed in the previous section (a steady vorticity disturb-
ance of constant presm.re), and, by continuity, must be
transveme; that is, the fluctuating velocity component is
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pmallel to the plane of the shear waves. Since the wave is
transverse, there may be a component of veloci@ disturbance
parallel to the shock @perpendicularto the plane of fig. 2(b))
which may be of arbitrary amplitude.

This type of interaction (problem C) is treated in refer-
ence 6.

ANALYSIS OF INTERACTION BETWEEN SHOCK AND
IMPOSED DISTURBANCE

TEEEE TYPlk9OF REFRACTIONAT SHOOK

It has previously been show-nthat the equations of motion
imply that any weak disturbance field may be divided into
two parts: an unsteady isentropic irrotational field, and a
steady vorticity disturbance. This point of view may be
adopted with regard to the disturbance downstream of the
shock, produced by the interaction.

Simple refracted sound wav~problem A,—In the case
of a sound wave overtaken by a shock @woblem A of the
previous section), it would seem reasonable to expect that
for #l nmr either O or r (fig. 2(a)), the isentmpic part of
the clownstrmm field would simply be a refracted sound
wave traveling away from the shock. This is indicated by
the sequence of events shown in figure 3(a). At time i,,
the initial wave intersects the shock front at point P1. At a
later time G=tl+ M, the sound wave has moved a distance
al&, the shock has moved a distance VW and the intersection
occurs at point P1. In the meantime, a cylindricalsound

wave has been generatedat pointPI as a resultof the shock

interactionand expands with velocity~, while being con-

vectedwith a velocityt7. Thus, at time tj, the effectof the

intersectionat tlisfelt within a cylinder of radius ~tit, with
center at point Q1. According to @me 3(a), an envelope is
formed and may be identified as a simple refmcted sound
wave.

Attenuating refracted pressure wav%problem A,—
Figure 3(a) is drawn for a rather small value of 4,. If+, is
increased, there appears a critical value 4CI (fig. 3(b)) be-
yond which no envelope maybe drawn. Thus, when +l>x.Z,
the influence of intenmction PI is felt at Pa before the inters-
ection arrives at PZ. However, as #1 is further increased,
there appears another critical angle x~ beyond which simple
envelopes may again be dmwm (fig. 3(d)) and simple sound
wave refraction occurs.

When +.l<Yl<#a, the downstream prasure disturbance
cannot be a simple sound wave. The cylindrical sound
waves produced by the interaction at the shock do not
coalesce, but rather continue to expand independently, thus
diminishing in strength as time progresses. Accordingly, the
isentropic part of the downstream disturbance may be ex-
pected to die out at large distances downstram of the shock.
This attenuating disturbance may, however, be expected to
remain planar, because both the incoming disturbance and
the shock are plane. This attenuating wave haa been called
a pressure wave rather than a sound wave, because, as wiU
be shown subsequently, it does not propagate at the local
velocity of sound,

IIkspres-sionsfor #., and ~w in terms of shock Mach number

may be obtained horn the following equation derived by
inspection of figure 3(b):

%?—(v— m2= (vcot$.+a’lCac+.)’ (17)

The solution of this equation is shown in Iigure 4, labeled
“sound wave.” The curves labeled ‘[stationary vortici@
wave” will be discussed subsequently. The curves both
approach a value of 180° for M= 1, and have a half-order
singularity there. As ikt~ co, the curves become symmetic
about 41=90”, because % becomes insignificant compmed
with V. The limiting value of #.1 is 67.8°.

Steady vorticity wav~problem A.—If a vorticity disturb-
ance is created at the shock-disturbance intersection (@. 3)
and is thence convected with a velocity V, a vorticitywave

appeam along the line camecting Pz and ~, whatever the
value of #l.

Thus, of the three types of refractions discussed, the
“steady vorticity wave” always appeam, in combination
with either a “simple refracted sound wave,” or an “at,-
twmating pressure wave”, depending on the angle #l.

(a) (b)

Lbrt&y
k’-

Sourd\mve

Incct

~,8t4’:

‘t’>
A

-shxk

.,--Shack

‘2

\ ,:lnciient

3 ‘m

(d) .

(a) O<ifl<b.
b) *l=lffd.
(c) +Cl<+,<lpm,
(d) #m<#,<m.

FIGURE3.—Formation of waves behind shook, because of interaction
with sound wave (problem A).
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Expectationsfor problem B.—In the csse of the shock
overtaken by a sound wave, it may be shown m constructing
figures sirnilaxto figure 3 thata simple reflected sound wave
will always occur, in conjqction, of course, with a steady
vorticity wave.

Expectations for problem C.—In the case of the shock
overtaking a stationary shear wave, sketches may be drawn
similsx to those presented in figure 3, except that the rncident
wave does not move in the time interval bt. The qualitative
character of the downstream disturbance is expected to be
the ssme as for problem A Dwpite the fact that the initkd
disturbance is not a sound wave, sound waves me produced
by the interaction and form envelopes when 0<~1<4.[ or
+,.<A<T. ~ ~ c~e, tie VSJUeSof $.1 ~d +~ me ob-
tained from equation(17) with the term involving ~ omitted.
The solutio~ which is presated in figure 4, is symmetric
about #1=90°, approaches 90° at M= 1 with a half-order
singularity, and has the same ssymptote at M= ~ as in
problem A As in problem ~ when x.l<+l<~m, an attenu-
ating pressurewave occurs, and for all values of xl, the steady
vorticity wave appears.

The foregoing discussion may be sunmmized aa follows:
In case A, the incident sound wave refracts, ss either a
simple sound wave or as a more complicated attenuating
pressure wave, and an oblique steady wave of vsxiable
entropy and vorticity appears. In case B, the incidemt
sound wave refiects at the shock ss a simple sound wave,
and a steady vorticity wave appears. In case C, the initial
‘%orticity wave” rehacts to form a stationsxy vorticity
wave in which, because of the action of the shock, the entropy
also varies. In addition, a sound wave, or pressure wavej is
produced by the interaction.

SOLUTIONOF PROBLEM A

Inthe problem of an oblique plane sound wave overtaken
by the shock, there are two diilerent solutions to be ob-
tained-one for O<#l<x.J snd +m<#l<z snd another for
#Cl<~,<~c=. The fit is the simpler snd will be presented
ht.

Solution when O<+,<$ci or +ti<#l<r.-The initial dis-
turbanm ahead of the shock is described in 6quations (12)
md (14). The discussion of the preceding section hss es-
tablished that, in these raiugesof #1, the pressure variation
b&ind the shock is associated with a simple sound wave.
Accordingly, the disturbance pressure is written

(18)

where K, a, 19,and AZsre to be determined. In order that
the presmre satisfy the wave equation (10),

d+p’=1 (19)

Equation (18) is written on the assumption that the proiile
of the pressure disturbance carries through the shock un-
distorted, though its orientation, msgnitude, snd scale may
chrmge. This assumption may be regarded ss a trial, the
correctness of which is inferred from the self-consistency of
the entire solution so obtained.

.,-7.

In view of the requirements of the shock relations (eqs.
(5)), the arguments of the downstream pressure wave (eq.
(18)) and the initial wave (eq. (12)) should match. At the
shock, zI= Vt and %= (V– U)t. The matching requirement
therefore is

Equating coefhients of y and tyields

where

r= U/V

(21)

(22)

Equations (19) and (21) yield a quadratic equ~tion for
Xfil, the m&&ngfuI solution of which is

?(l’+)
{‘2=(1++77+”’(-1+

1

d1—r l+n’(’-rw+iiiz)

~+1 (l–r)1–-
.

where

n=l/m= tan #l

(23)

(24)

I

160~~

. Stnlrdwove,. ,,~
,,,

.’
140- \

g
-0 i. +W
*G

~ >
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\-SWbmrymrlidtywwe /’

G 1’

Asyinptolesi

1
+=1

$I
8

L !
() ,,

I
,

+Cl —— –L.- —
T

601 2 3 5
Shock Mach nu%q ~al EM

6 7

FIGURE4.—&itical angle of inoident wave for formation of refraoted
sound wave behind shook.



IJIWCEADY OBLIQUE INT13R4C?TIONOF A SHOOK WAVE WT’l!H A PLANE DISTURBANCE 223

The other solution corresponds to a wave moving in the
same direction m the shock and is rejected. (lhspection of
fig. 3(u) shows that two familiea of envelopes might be indi-
cated mathematically, and that only one is physically sig-
niticrmt.) Thus, the inclination and scale of the pressure
wave are fully determined, and ody the magnitude K re-
mains to be found.

The vorticity wave will also be assumed to have a protie
given by the function j. In tiew of equation (12), its argu-
ment can be a function only of % and y, and must further-
more match the argument of the incident wave at the shock,
in order that the shock relations may be satisfied. At the
shock, the argument of- the incident wave is given by the
righkhand side of equation (2o). Also, -t= G/(V– U), at the
shock. The argument of the vorticity wave must therefore
be

m+ l/M

l—r
Xg—ly

(25)

The inclination and scale of the vorticity wave are thus de-
termined.

The density fluctuation behind the shock consists of two
parts-one part associated with the pressure fluctuation to
form the sound wave, its magnitude detetied by equation
(11);the other part associated with the vorticity wave. Thus,

7n+l/M

)( Z,–ly
CYZ2+pY+U4 +Qf 1–7X1fi=:f ( ~, )(26)

Likewise, the velocity components each consist of two
parts, the first associated with the sound wave and the se~’
ond associated with the vorticity wave. Accordingly,

m+l/M

)(

X,–ly

+=Hf ~“+;:+%t -+If l–TX, ) (28)

The requirement that all terms in the shock equations (5)
have the same functiomd form and the same argument
suggests that

&=VLf
[

(m+l/i14) Vt–ly
Al 1
[ 1 (29)

–&=l+l’mM
~~ (m-t I/M) Vt–iy

A* 1
(Cross-differentiation shows that these two equations are
compatible.)

The solution is completed by the algebraic determination
of the various unlmown constants. The coefficients F and
H maybe found in terms of K through equations (7); I may
be found in terms of (7 from the incompressible continuity
equation. The remaining unknowns K, Q, G, and L may be
successively determined by use of the four shock relations

(eqs. (5)) when it is recalled that the arguments of all quan-
tities have been arranged to match at the shock. Neither
the details of the remaining procedure nor of the final solu-
tion are particularly interesting, and therefore the analysis
has been completed in appendix B. The numerical results
will be discussed in a subsequent section.

Form of attenuating pressure wave when #,*<#l<#m.—It
is intended to form the solution for this range of ~1in essen-
tially the same way as was done in the preceding paragraph.
b essentifd step in that solution was the assumption that
the refrac~d sound wave has the same profile as the initial
disturbmce. Therefore, in order to proceed with the analysis
of the case #. J<#l<#m, it is first neceasmy to determine the
form of the pressure disturbance just behind the shock and
the manner in which it attenuates with distance behind the
shock.

Tentatively, the pressure is written as a function of two
variablea only:

where

(30)

(31)

and the constants d, a, P, and c require determination. The
variable ~ is proportional to distance behind the shock front,
—~+ (V— U)$. Neither the undisturbed shock front nor
the incident wave ha-scurvature. Therefore, it is expected
that along any one of a family of plane9 moving with con-
stant velocity, any variation of pressure would be due solely
to the attenuation a.mociatedwith distance behind the ihock.
This consideration leads to the definition of the second vari-
able ~, such that the equation ~= constant defines a plane
moving obliquely with a constant velocity.

The wave equation (10) is satisfied if

-~ (l+C

~ [0?(1–r)2–c7 = o?–(c?+f??

(32a)

(32b)

(32c)

The bound~ conditions to be applied in solving La-
place’s equation (32a) are

fi(m, r)=o (33)

and a condition (eq. (5c)) at the shock providing compati-
bility with the initial disturbance. In the following discus-
sion, this information will be used to infer a likely form for
the pressure wave.

Part of the downstream velocity variation is associated
with the pressure to form an isentropic irrotational flow.
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For this part of the disturbance field, a veloci~ potential
~(~,0 may th~efore be d~ed such fiat

In view of equations (7) and (34),

Therefore,

(34C)

In the case of the simple sound wave, compatibility at the
shock was obtained by supposing that the profle of the dis-
turbance (the function j carried through the shock undis-
torted. h the present case, the corresponding assumption
would be that, just behind the shock at q=O, the various
disturbance quantities each contain a term proportional to
f(~) and that ~ should therefore match-the argument of the
initial disturbance at the shock. From equation (34b), if
ti(O,tj is to contain a term proportional to ~(r), then the
potential must contain a term proportional to

which satisfies equation (32a] and hence the wave equation,
satisfiesboundary condition (33), and has the property that
pra) (O,t)=~(t). This solution maybe regarded as the result
of a distribution of singularitiw along the plane of the shock
(q= O). In the skew coordinate system q,~, these singuhwi-
ties may be identified as potential-flow vortices. Therefore,
bm equations (34a) and (34c), w and pawould each contain
a term linear in j~) at the shock and, in addition,
linear in

where P. V. denotes the Cauchy principal value of
proper integgsl.

Of course, @ would likely contain a term linear in

a term

(35a)

ar’im-

g(~) at
the shock also, and therefore the potential would ha~~-an-
other part

s
@=_A “

2X -. $(r)ln[q’+(r– ~)qdr

satisfying equations (32a) and (33), and having the proper.
ties

qr@) (0,~)=g(~); P,u) (o)t) = —t(~) (35b)

This solution may be regarded as a distribution of potential-
flow sources along the plane of the shock in the T,r system.

Thus, the quantities associated with the attenuating pres-
sure wave may tentatively be written in the following form:

P2(v)r)=~o)@a)(q, {)+K@@@(~, r)
P,

(36)

and the constants @ and .W require determination. At
the shock, equations (35) and (36) provide that:

Examples,-(a) If it happens that j(~)= sin 27r3’, then
g(t) ‘ms 2~t, ~d

.@n=@r, sin 2T~

and, therefore, the disturbance undergoes a phase shift in
PSSS@ through the ehock ~d ~bsquen~y attenuat~ e~-
ponentially with distance behind the shock.

(b) If ~(~)= (l+ f?-’, then g&) =–111+~~-1 (see ac-
companying sketch), and

E=(l + ;’+ r’‘K(’)‘1+~)–=(a ‘]

[9({ )

-3 -2 -1 c

Solution when #cl<#l<#C..—The form of the pressure
wave has b~en adduced in the previous paragraph (eq, (36)).
The quantities d, a, 13,and c may be found by using equations
(32) and the requirement that the disturbance function $
have the same argument ahead of and behind the shock,
At the shock, Zl= Vt, q= (V– U)i$, thisrequirement leads to
the equations ,

fl=-1 (390)

m+l/M—c(y=
1—T

(39b)

Equations (32b) and (39b) yield

and equation (32c) may be solved for d:

r—$CX+2+P
d= (3S)d)

1–~ (1–T)*

The vorticity wave is expected to involve a linear combi-



UNSTEADY OBLIQUE INTERACTION OF A SHOCK WAT’13 WTTH A PLANI!l DISTURBANCE

nation of the profile functions ~ and g, just behind the shock,
and is not expected to change its form subsequently, because
it is not time-dependent in the %,y coordinate system and
therefore cannot attenuate, as does the pressure wave, or
otherwise change character. A matching procedure at the
shock yields, as previously, the argument given in expres-
sion (25).

The remaining analysis parallels that following expression
(25) in the pmagraph Solution when 0<4,<#., or #ti<4t<r.

(40)

3=~(o@v +~(8@-J +Qm fv (mt:;:z’-’y)+

(41)

(42)

;+(O f
[ ‘m+l’T-’yl+z(ag[(m+l’Yv’-’yl@)

{[

m+l/M)Vt-ly + ,
-%=1 + ~;’m L(Of

Al 1
~{ng (m+l/M)Vt-ly

[ Al 1} (44)

The various unlmown constants remain to be determined
algebraically through equations (7), the incompressible con-
tinuity equation, and the shock equations (5), as before.
These equations suf3ke to determine a greater number of
constrmts than were required in the previous case because
the functions ~, g, W, and @(a and their derivatives form
two separate groups of functions whose coef6cients may be
sepamtely equated. Details of this procedure are provided
in appendix B.

SOLUTIONOF PROBmM B

The analysis of problem B (sound wavg overtaking shock
from behind) is identical in all essential respects to that of
problem A when only a simple refracted sound wave is in-
volved. The only d.Merenc.eswhich arise are “the slightly
difFerentmatching of arguments at the shock and a slightly
different form assumed by the shock relations (5).

The equation (18) is adopted in the present case to rep-
resent the reflected sound wave. Matching the argument of
this expression with that of the initial disturbance (eq. (14))
yields

+ { [CXW–T)+QJ+/@}=* { [mW-@–

whence,

(46a)

(46b)

Equations (19) and (46) provide a quadratic equation for
Xa/XZl,the useful solution being:

k2_
$+$-(1-T)’

xl— (46c)
(1 –@’+2 ~ m(l–r)+$

The other solution is Xn~21= 1, corresponding to the incident
wave itself.

The right side of equation (45) is used as the argument in
the expressions for f, and &:

&=VLf { [mV(l –r)+G]t– lY}

~v= – n Lj{ [mV(l –~)+~] t–ly}
l–r+%

(47)

The right side of equation (45) also yields the argument of
the vorticity wave, when the substitution t.= G/(V– U) is
made:

[ 1‘+V(lG–r) “-ZY (48)

Equations (26), (27), and (28) may be adopted to complete
the description of the flow, except that expression (48) must
be used for the argument of the vortici~ wave. The analysis
is completed in appendix B.

SOLUTIONOF PROBLEM C

The only differences between problem A and problem C
(stationary vorticity wave overtaken by shock) involve the
shock equations (5) and the matching of arguments at the
shock. The difference in matching is due to the fact that in
the present case,the disturbance is stationary, while in prob-
lem A, the disturbance moves with velocity%. Accordingly,
when 0<#1<#61, equations (18), (21), (23), and (25) through
(29) apply directly to the present case if the quantity l/14
is omitted wherever it appears explicitly. When #.z<IA<+~,

equations (36), (37), and (39) through (44) may also be
adopted, again by omitting terms propo~tional to l/lM. The
remaining details of the analysis are provided in appendix B.

& previously mentioned, an initial disturbance of type C
may have a third fluctuating velocity component parallel to
the shock, which might be represented as follows:
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(see eqs. (15)). The amplitude A, is arbitrary, within the
limitations of linear analysis. This disturbance will paas
through the shock unaffected and beceme part of ,the steady
vorticity wave behind the shock. Thus,

The shock front itself will not be affected by this purely
transverse disturbance.

SINGULAIUTIB3 AT #. I AND $..

Equation (23), which applies in the refracted sound-wave
solution, contains a radical which vanishes at ~d and Y.,
and becomes imagkmy when $Cl<$l<+=. It may be shown
that the quantity under the radical mnishea with a nomzero
slope. Accordingly, the quantity ~~1, though iinite, has a
half-order singularity at #d and Xm. Furthermore, this
quantity is involved in all the formulas characterizing the
refracted sound wave (see appendix B). k the range #d<
#~S#.ti, the attenuation coefficient d (eq. (39d)) vanishes
with half-order singularities at YCland #m and similarly
affects the remainder of the analysis.

The reason for this singular behavior may be inferred ilom
figure 3. According to iigure 3(a), when 0<#,<4.z, the
refracted sound wave is the envelope of an imagined succes-
sion of cylindrical waves, as shown in the following sketch.

133fmcted

,

&/wave-..
/

/

/’

Refracted

Shock

At $,*, however, according to figure 3(b), the cylindrical
wavea all meet at a common point of tangency, as shown b
the sketch. Therefore, successive waves reinforce at one
point, giving a singularity of the flow. This singularity, of
courm, depends on the fact that the theory is linear. An
exact analysis would presumably show steep, though not
singular, flow gradients.

This situation is similar to tit arisiig ~ the linearized
analysis of compressible flow about bodies: as the Mach
number of the flow approaches 1, the Mach waves have a comm-
on point of tangency at the nose, and the wave drag shows
a reciprocal half-order singularity in Mach number. In the
present case, the physical quantities remain fite, but have
in6nite ratw of varhtion with *l.

The preceding discussion applies to problems A and C,
but not to B.

RESULTS AND DISCUSSION

In the following paragraph, the results (presented in
graphical form) will be described for problems A and B.

Results for problem C are presented imreference 6. The solu-
tion for each problem haa essentially three elements:

1. Disturbance of the shape of the shock front
2. Chrmackristics of the isentropic pressure wave behind

the shock
3. Characteristics of the steady vorticity wave behind the

shock.
Computations have been carried out for three Mach num-

bers, 1, 1.6, and iniinity. Of course, the case &f=l is redly
degenerate, because the shock is then a weak sound Wuvoj
and therefore the interaction with the incident disturbance
is obtained by linear superposition, the initial disturbance
passing through the “shock” with no change. Also, M= 1
is a singular point, because the range of angles of incidence
of initial disturbance for which the attenuating pressure
wave appears in problems A and C vanishes with a half-order
eingulari@- (fig. 4), and in problem B, because the incident
wave is unable to overt&e the “shock” moving with sonic
velocity.

The results will show that the critical angles #,1 and ~,.
are also singular points. In many iustancea there are not a
sufficient number of points near the singular points for which
computations havebeen made, so that not all the curves cm
be faired with complete cmdidence. For this reason, the
computed points are shown circled, so that the basis for the
fairing w-illbe clear in each case.

No mention will be made of the temperature disturbance
behind the shock, which may be obtained directly from equa-
tion (4) if the pressure and density disturbances are known.

All disturbance quantities found by the linearized analysis
of the present report will be proportional to the intensity of
the incident wave. Therefore, results are divided by the
pressure amplitude of the incident wave & (see eqs. (12a)
and (14aJ).

PROBLEM A-SHOCK OVERTMUNG SOUND WAVE

1. Shock front disturlmnce.-In figure5 are shown the

amplitudesLa]’ =La)/& and L@)’ =L@)/~ of the incremental
velocity of the shock front, due to the interaction. From
equations (29), (43), and (44) these amplitudes are associ-
ated, respectively, with the functions j (which deiinea tho
proiile shape of the incident wave) and g (which is an addi-
tional profle function arising when #,z<~l<#J to give tho
actmd incremental veloci~. The variations with *I ape
quite extreme, particularly at the critical angles, whom, in
fact, there are half-order singularities. The variations with
Mach number are equally severe.

When +,=0 (incident wave moving parallel to and toward
the shock), the figure shows that the shock front is retarded
by a prmsure wave. Ii the case M=l, this is becaum the
velocity in an incident compressive sound wave, relative to
which the ~ock (really a weak compression wave) propa-
gates as it moves through the disturbance, is directed against
the shock. When the incident compr~ion wave moves in
the same direction M the shock (Xl=r), the shock front is
speeded up for low shock Mach nurnbem; at M= 1, this is
tie because the incremental velocity due to the incident
wave is in the same direction as the ‘%hock” movement,
Whether $1=0 or ~, there is a smaller accelerating effect due
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Fmmm 5.—ProblemA: shookfrontdiaturbanm(shockovertaking
sound wave).

to the higher velocity of sound in the incident compression
wave-that is why the curve for M= 1 is not perfectly
rmtiawmnetricalrbbout41=7/2.

Men M= co, the curves are symmetrical about +,=r/2
bec.nusethe in~emental sound-w~ve velocityisvanishingly

small compared with the shock velocity. -
For each value of M th&e is a value of xl for which th~

shock intersects the incident sound wave permanently al
one point on the traveling wave, and the problem becomti
essentially steady, so that the incrment in shock velocit~
vanishes (though a steady displacement occurs). This hap-
pms when al=—ml’ or +I=sec-l(—kf), yielding 131~8c
~vhen M= 1.5,and 90° when M= co, and is the caae oj
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l?rGuEE6.—Problem A: inclination of refraoted pressurs front (shook
overtaking sound wave).

steady interaction of a Mach wave and a normal shock which
has been treated by Adams (ref. 2).

2. Charaotetistics of pressure wave.—(a) Inclination of
refriwted pressure front: Figure 6 shows the angle between
the directions of propagation of the shock and the refracted
pressure wave behind the shock. In view of equatio~ (18)
and (31), this quantity is given by the equation

#,=cot-’(-a/p)

Of course, when #.r<#l<#ti, this wave is not a sound wave,
and the inclination shown refers to a front parallel to which
physical quantities depend only on distance behind the shock
Outside the range #~<#1<#~, the pr-ure wave iS a round
wave. When M= ~, the’curve is symmetrical about #l=rr/2.
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lWxnm 7.—Problem A: attenuation of pressure wave behind shock
(shock overtaking sound wave).

(b) Coefficient of attenuation of pressure wave: Figure 7
shows the coefficient d which appeam in equations(31)and

(39d). This quanti@ vanishesat xc,and x-, indicatingthat

thesound-wave solutionand attenuatingwave solutionmeet

continuouslyat the criticalangles When M i9either1.5or

m, the maximum value of d is about 1. This implies a
ratherrapidattenuation-tij(t)=sin 27r~,ithas been shown

(eqs.(38)) that the wave attenuate as exp(-2w). From
the definition of q (eq. (31)), when d= 1, the attenuation
factor becomes e-l at a distance behind the shock approxi-
mately equal to l/2~ times the wave length of the incident
sound wave.

(c) Propagation veloci~ of pressure wave when ~=1<#1<
#~: Fig-m 8 shows the quantity c of equations (31) and
(39c), combined with other quantities to give propagation
velocity as a fraction of the speed of sound ~. Since the
solution when #cz<#l<xw meets the sound-wave solution
continuously, the propagation velocity is equal to the speed
of sound at x.* and +a. The change of sign of c is taken
into account in figure 6 by the 180° shift of direction shown
at the angle for which c= O.

(d) Ratio of scales of pressure waves behind and ahead of
shock: Figure 9 shows the quantity &/xl (eq. (23)), which
w defined only for the sound-wave selution. However,
inspection of equation (31) shows that the equivalent quan-
tity when $.l<#l<#a is (&+&)-~s.

The reversal of sign of AJhlsigties a reversal of the direc-
tion of propagation of the pressurewave relative to the shape
of the incident wave. For example, when Xl= O,the incoming
and outgoing waves might appear as follows:

[
A d:~::f”

whereas when 41= Z, they would appear thus:
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FrGurLE 8.—Problem A: m-opmtion velooity of mwmure wave behind
shock (s~oo~ o;ertakfng sound w“ave).

FIGURE9.—ProblemA: ratioofscalesofpreaeurewave upstreamancl
downatmam ofshook(shockovertakingeoundwave).

The diilerence between these two casw consists of a di&eronce
b sign in the arguments of the refracted wave in the two
cases, and arises formally in the present analysis as I-Lchange
in sign of:~l.
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FmunE 10.—Problem A: amplitudes of preesure disturbance behind
shock (shook overtaking eound wave).

When M= 1.5,the magnitude of hJxl is greater for $I=r
than for ~1=0, because, when the incident wave is traveling
in the same direction as the shock, the shock requires a
longer time to traverse the incident wave than when the two
waves travel in opposing directions.

(e) Amplitudes of pressure disturbance behind shock:
l?igure 10 shows the coefficients (off, or of @o) and @@)
when 1.I<41<#J which describe the pressure wave behind
the shock: ZW 2)’=lW2)/& (see eqs. (18) and (36)). & in
figure 5, the flow is shown to be singular at the two critical
angles and to vary markedly with both YI and M. At
M= 1.5, near #l=r, the refracted sound wave is seen to be
very wenk,
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FIGURE Il.—problem A: eoef60ient for part of % asscmiated moth
pressure wave (shook overtaking eound wave).

Since the pressure wave is isentropic, the coticients of
the corresponding part of the densi~ variation are equal to
I/y times the pressure coticient.

(f) and (g) Coticients for veloci~ components in pres-

sure wave: l?igures 11 and 12 show’ the coticients for the
velocity components associated with the isentropic pressure
wave behind the shock (eqs. (27), (28), (41), and (42)). The
velocity resultant is longitudinal with re9pect to the direc-
tion of propagation of the pressure wave, except when
$CZ<*l<+CU.
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3, Characteristicsofsteadyvorticitywave behind shock.—

(a) Inclinationof the steady vortici~ wave: Figure 13

shows the inclinationx, of the vorticityfrontbehind the

shock. From equation (25),

‘S=co’-’[%%l

(b) Ratio of scale of vorticity wave to that of incident
sound wave: From equations (12a) and (25), this is

(l~m)-’=~q
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(shook overtaking sound wave).

4 I I
Mach number,

M
—. 1
——_ 1.5

al
3 /

/,

/

2
/

/
/+1 I-*

/ ‘. >.

/
. /

/’

I —– —-- -
,/

/“

A 0 \

0-< ~-~ y
> 0

0 20 40 100 120 140 160 180
Inc%th %iricident vm”e, ya dq
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shock to that of inoident sound -wave (shook overtaking sound
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which is shown in figure 14.
scale ratio goes to OYbecause
take the incident wave.

When M= 1 and #l=m, the
the “shock” is unable t6 ovor-
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FIGUnE 18.—Problem B: shock-front disturbance (sound wave over-
taking shook).

(c) Amplitude of density vaxiation in vorticity wave be-
hind shock: Figure 15 shows (Jo)’ and Q@’ (eqs. (26) and
(40)). Appamntiy, when ikf is of order 1.5, the vorticity
wave is very weak.

(d) and (e) Coefficients for velocity components in vor-
ticity wave: Figures 16 and 17 show the co~ciente for the
transverse velocity field amociated with the vorticity wave
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l?muan 19.—Problem B: inclination of refleoted eound wave (sound
wave overtaking shock).

PROBLEM E-SOUND WAVE OvertakingSHOCK FROM BERIND

Consistentwith the previousanalysis,computationshave

been carried out only for values of $,, (inciden&wave incli-
nation) suiliciently close to 180° that the component of
propagation velocity in the direction of the motion of the
shock is greater than the velocity of the shock ~elative to
the fluid behind. These values of x, are 134.5° and 112.2°
for Ill= 1.5 and m, respectively.

1. Shook-front disturbanoe.—Figure- 18 shows the amph-
tude of the incremental shock-front velocity L’=LIAS.
When X2, is near 180°, an incident pressure wave displaces
the shock ahead.

2. Characteristics of refleoted sound wave.—The down-
stream pressure -wavein problem B is always a simple sound
wave.

(a) Inclination of reflected wave: The inclination XB=
cot-l (— a/@) (see eq. (18)) is shown in figure 19. In eflect,
the incident and reflected waves coalesce into a single wave
at the critical angk.

(b) Ratio of scales of reflected and incident sound waves:
This ratio is given by equation (46c) and is shown in figure
20. At xZ,=T, the scale ratio is greater when M= 1.5 than
when AI= ~, just w in problem A, and for the same reason.
At the critical angle, the ratio becomes 1,because the incident
and reflected waves coalesce.

(c) Amplitude of reflected sound wave: The pressure
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IMURE 20.—Problem B: ratio of scalea of refleoted and inofdant sound
wav= (eound wave overtaking shock).
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FrmJEE 21.—Problem B: amplitude of refleotad sound wavo (sound
wave overtaking shook).

amplitude K’ =K/~ (eq. (18)) is shown in figure 21. At
~,l=r, an incident compression wave refleck as an expansion
wa$e with a strengthwhich isgreater the higher the Mach
number, but always less than that of the incident WOVO,

/
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~KHJFiE22.—Problem B: inclination of vorticity wave produced
behind shook (sound wave overtaking shock).

The velocity components sssociatd with the reflected
sound wave are obtained simply from E’ and are therefore
not plotted.

3, Charaoteristios of steady vortioity wave,—The coeffi-
cirmt Q’ of the density fluctuation in the vorticity wave is
simply proportional to L’ (combining eqs. @26) and (J327)
of appendix B) and is therefore not shown in a figure.

At M=l.5, Q’= –0.147L’

At M= W, Q’=–1.43L’

(a) Inclinationofvorticitywave: From equation(47),the

inclinationisgivenby

H 11+13=cot-’ + 1+ ~f”) ‘

which is plotted in figure 22.
(b) Ratio of scale of vorticity wave b that of incident

sound wave: As in problem A, this ratio is given by
(1/1) sin #n and is shown in figure 23. As for the reflected
sound wave, the scale ratio is larger for M nearer one..

(c) and (d) Velocity variations in vorticity wave: Coeffi-
cients G’ and I’ of the transverse velocity fluctuation (eqs.
(27) and (28)) in the vorticity wave are shown in figures 24
and 25.

4, Wave reflection at critical angle.-The analysis and
figures show that at the critical angle the incident and re-
flected sound wavca coalesce to form a single sound #ave.
This statement may be interpreted to mean that a sound
wave incident at the critical angle reflects as a steady vor-
ticity wave only. Therefore, the shock disturbance and
vorticity wave characteristics may be expressed in terms of
the pressure amplitude of a single incident sound wave of
strength zb+~=~ (1+~’).

FIGURE 23.-ProblemB: ratioofscalesofvortioitywavebehindshock
andinoidentsoundwave (soundwave overtakingehook).
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Fmurm 24.—Problem B: coefEoient for part of u= associated with
vorticity wave (sound wave overtaking shook).
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CONCLUDING REMARKS

In principle, the interaction of a shock with any weak
flow field may be obtained by first constructing the initial
flow field as a linear combination of plane waves of varying
strength and orientation. From the prwent analysis the
interaction of each constituent wave with the shock may be
found. Assembling the resulting waves behind the shock
then would yield the desired solution. Regrettably, the
formulas for the interaction depend on the angle of incidence
in a rather complicated way and it would in general be di.tE-
cult ta evaluate explicitly integrals in which th=e formulas
me used for the distribution functions. Numerical pro:
cedurcs could be used for this purpose, though a technique
would be required for dealing with the singularities at the
critical angles xC1and #~.

The nature of the solution of problem B perhaps requires
a clarification, in that the angles of incidence & have been

restricted to the range for which the sound wave overtakes
the shock. For purposes of superposition, however, all inci-
dence angles must be considered. Inspection of figures 6 to
12 shows that a sound wave of any incidence anglca between
Oand T may be identified either as an incident wave or as a
reflected wave, in the sense of the analy& For purposes
of linear superposition, the distinction between incident and
reflected waves is of no signi@nce. The point of view may
be adopted that whatever its angle, a constituent wavo of
the initial flow haa associated with it another sound wave of
another angle and a steady vortici~ wave. The notion of
cause and effect is not needed.

LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY Commrr EE FOR AERONAUTICS

CLEvmmTD, ORIO, February 8, 1964.

APPENDIX
NOTATION

A

The following symbols are used in this repoti
A,, AZ, A, L coefficients of incident disturbance (eqs.

(12a), (14a), or (15))
a velocity of sound
B,, BS coefficients in shock relations (eqs. (6))
c,, c, coefficients in shock relations (eqs. (6))
c dimensiodws veloci~ of propagation of

pressure wave behind shock (eq. (31) or
(39C))

Cg specific heat at constant volume
Dl, DX coeilicients in shock relations (eqs. (6))
d coefficient of attenuation of pressure wave

behind shock (eq. (31) or (39d))
1’ coefficient of part of % associated with pres-

sure wave (eq. (27) or (41))
f proiile function of incident wave (eqs. (12a),

(14a), or (15))
Q coefficient of part of% associated with vor-

ticity wave (eq. (27) or (41))
&! additional profle function appearing behind

shock

(=:PTU’.f(r) (T– r)-’dr, eq. (35a)
)

H

I

J
E
L
1
M
m
n
P

P

coefficient of part of U2associated with pres-
sure wave (eq. (28) or (42))

functions involved in solution when 4.1<
*l<LX (eqs. @319), appen~ B)

coefficient of part of N associati with vor-
ticity wave (eq. (28) or (42))

gas constant (eq. (4))
coefficient of P* (eq. (18) or (36))
coefficient for f(y,t) (eqs. (29) or (43))
sin 41 or sin +91
Mach number of shock (= V/a,)
cos $1 or 00s *Z1
tan xl or tan #zl
mean static pressure

perturbationin staticpressure

(?
B
r
t
u
u

v

n

coefficient for density fluctuation in vor-
ticity wave (eq. (26) or (40))

mean gaa density
ratio ofutov
time
mean velocity of gas behind shock (fig. 1) ‘
perturbation of velocity component in Z-

direction (fig. 1)
mean velocity of propagation of shock in

gas at mat (fig. 1)
perturbation of velocity component in y-

direction
coordinates measured in the direction of tbe

shock propagation, relative to which the
gas is (on’ the average) at rest ahead of
and behind the shock, respectively (figs.
land2) -

coordinate orthogonal to Z1or a (figs. 1 and
2)

functions deiining pressure front (eqs. (21)
or (39))

ratio of specific heats (s 1.4 for air)
variable upon which pressure wave depends

when #c,<xl<x= (eqs. (31))
variable upon which pressurewave depends

when Xcl<#l<#m (eqs. (31))
mean static temperature
fluctuation in static temperature
scale of preeare wave (eq. (23))
displacement of shock front (fig. 1)
fluctuation in gas density
functions appearing in solution for L (eqs.

(B9) or (B31), appendix B)
function associated with presmie wave when

#. J<#l<*m (eqs. (37))
velocity potential associated with pressure

wave when fi,l<+l<~m
anglea of inclination of incident waves (fig.

2)
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$2,h rmgleaof inclinationof pressurewave be-

hind shock (figs.6 or 19) ‘

$3,$23 anglesofinclinationofvorticitywavebehind

shock (figs.13 or 22)

+el,$,. IoJverand upper bounds, respectively,of

therange of 41forwhich the attenuating

pre9surewave appears (eq.(17))

Subscripts:

a

Subscript notation for partial diilerentiation has been
used where convenient.
1 conditions ahead of shock

PEOBLEM A

2 conditions behind shook
Double subscripts 21. and 22 (problem B), incident and

reflected wave9, respectively.
Superscripts:
(l), coefficients associated withy at shock
(2) coefficients aseotiated W-MIg at shock

Primed coefficients are referred to intensity of incident
wave. (A, in problems A and B,@Wi in problem C).

Primes are also used to denote ordinary ditlerentiation of
f and g with respect to their arguments.

APPENDIX B

COMPLETION OF INTERACI’ION ANALYSIS

The solution of problem A is found in two separate ranges
of #1, for which the solution involves a refracted sound wave
in one cnse and a rehacted attenuating pressure wave in the
other. The analysis will be completed in that order.

L 0<+1<14.z, #~~<+l<r.—Equatiom (27) and (28) are
substituted into equations (7), and coeiiicients of j’ are
equated, yielding:

F– ~ Xa——1’v
1

@l)E=–%TVKP

When equations (26), (27), and (28) are substituted into
cmtinuity equation (8), the quantities associated with the
sound wave combine to satisfy cmdirmi@. The terms wo-
ciated with the vorticity wave then must satisfy the incom-
pressible continuity equation (u+%=O) because the corre-
sponding density term is time-independent. Therefore,
equating coefficients of j‘ yieldI3

~=l+UMm ~
n (1—T)

(B2)

The shock equationsremain tobe satisfied;itshouIdbe noted

thatthe arguments ofj forthe variousquantitieshave been

matched attheshock,sothatcoefficientsofjmay be equated.

From equations(5a),(27),(29),and (12a),

G= L–F–B,(L–A,)–B,& (B3)

From equations (6b), (5c), (5d), respectively, with the neces-
sary substitutions made,

Q= Q,(L–A,)+GA,-~ (B4)

K= DI (L–AI) +DzA~ (335)

(B6)

The terms H and I in equation (B6) may be expressedin

terms of L by using equations (231), (B2), (B3), and (135).
The r~uhing equation for L yields the result

or, from equations (6), (21), and (23):

where I and (22) that

“=*(1-+).

(137)

(B8)

and @9)

(

y+l l+U’2 lJ9

)~

($Y=@@+s”)
x= l—~r ‘y-l

l+~r When L’ is bown, the remaining coefficients follow from
and where use is made of the results from equations (2), (6), equatiom @l) through (B5).
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2. ~Cl<#l<~CU,—Equations (36) and (41) substituted into
(7) give

~o)@,(l)+pa@,m=— Q* ~(l)@=(lI+K@@q@) @lo)
7(

From equations (31) and (37),

%(~~=(v-u)$q(~~+ S.@l.n

@%mm= _I&+:@r(La

Equations (37) show that -

@g@=q@ ; @{~=—@,@)

Accordingly, equation @lO) nmy be written: ,

(l–r)dl’(o@,(u– cFo)@~@+(1 —r)dFm@qm+cWW,(l)

~[–dww,%w’b,~ –dK%.q@ +dP&q
‘—yv

By equating coefficients of @,~ and @,@ separately,

(1–r)dFo) +CFm=*(dK(l)-CIKm)

(l–r)dFm –cFm=$(dKm +&(D)

Similarly, equations (36), (42), and (7) yield:

(1–r)dHm +cHm = –-$J?KY

(1–r)dH@ –CH(n=$BK~
}

(B1l)

(B12)

When equations (41) and (42) are substituted inti equation
(8), and coefficients of j’ and g’ &e equated, the following
equations are obtained:

“1”
(B13)

I+&Gm

~@)= 7@–r)

The shock conditions remain to be applied. Equations
(5n), (5b), (5c), and (5d) yield, respectively, the following
four pairs of equations, when the coefficients of j and g are
separately equated:

Q@=c@(~ –AJ+c2A*-K(”/7

)

(B15)
Q@= O,L@) –K@/Y

(B17)

Equations @n) through @17) may be combined to yield
the solutions for La) and L@

where

1—T 1—BI
1

h,=l–— —

T u’

‘3’-’”(?%4
Equations Q316) are substituted
which may be solved to yield

into equations (B11),

( )‘(’)’=h’ L(’)’+%+%–hJ(a’

( }
(B20)

)
~(a;=h4Lmf+h5 L(’~’+fi+~

where

4 u’
““m ~

}

@21)

‘,+$++ $

Similarly,

The remaining quantitiw follow horn equations (B14) Dncl
@15).

PROBLEM B

The solutionof problem B isrestrictedto angles~Zlfor

which —m>: (1—r), and involves a reflected sound wave

and vorticity wave behind the shock. The momentum equw.
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tions (7) provide

and the continuity equation (8) provides that

(B23)

@24)

Ml perturbation quantities vanish ahead of the shock, and
shock relations (6a), (5b), (5c), and (5d) yield, rw.peetively,

O=L(l–B~ –F–A, @25)

Q= Q,L–A,–K/Y (B26)

K=D,L–& (B27)

~=m(l–d+dv
lr

(H+I+A) (B28)

By solving the foregoing set of equations for L,

where
n

u=

1+
a~V

m (1—T)

d
l–r

X= —(b+m) ~pjlr

.

(B29)

(-B30)

The remaining quantities follow from equations (B23)
through (B27) .

PROBLEM C

The analysisof thisproblem parallelsthat of problem A.
1, O<#,<yCl, #C=<~l<~,—The equationsof motion (7)

and (S)provide

p= –~v Ka

1= a
n(l —r)

The shock equations (5) give

(3= L-F-B, (L-A~

Q= 0, (L–Ad–K/Y

K= D,(L–AJ

L=& (H+I–A,)

The-seequations may be solved to yield

“‘& [
=1 +

?’(1—m)
‘) ’+1 ( )]1+x–T r 1+~ —

where, in this case,
u=n(l —r) 1

(
7+1 l+U’ lf’

x= l—Tr H (1331)
7—1l+~r

2. 4.l<#,<Y.ti. The analysisis essentiallyidentical to the
corresponding part of problem A, except that the constants
B,, G& and D, do not appear in the present case, and the
Mach number ill does not appear mplicitly. Except for
these d.iflerances, equations (3314) through (B17) may be
carried over to the present case. The solutions for Z(l) and
Ln maybe written as

The definitions of the h’s follow those of problem A (eqs.
(B19) and (B21)), with the exceptions that

()h=l—rl 1 ~
1 —— —_

Tuu

&d, in this case, u=n(l —r). The solutions for the F’s and
H% are:

The remaining quantities follow as before.
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